Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2693563.v1

ABSTRACT

The mechanism of syncytium formation, caused by spike-induced cell-cell fusion in severe COVID-19, is largely unclear. Here we combine chemical genetics with 4D confocal imaging to establish the cell surface heparan sulfate (HS) as a critical host factor exploited by SARS-CoV-2 to enhance spike’s fusogenic activity. HS binds spike to facilitate ACE2 clustering, generating synapse-like cell-cell contacts to promote fusion pore formation. ACE2 clustering, and thus, syncytium formation is significantly mitigated by chemical or genetic elimination of cell surface HS, while in a cell-free system consisting of purified HS, spike, and lipid-anchored ACE2, HS directly induces ACE2 clustering. Importantly, the interaction of HS with spike allosterically enables a conserved ACE2 linker in receptor clustering, which concentrates spike at the fusion site to overcome fusion-associated activity loss. This fusion-boosting mechanism can be effectively targeted by an investigational HS-binding drug, which reduces syncytium formation in vitro and viral infection in mice.


Subject(s)
COVID-19 , Virus Diseases
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.05.429982

ABSTRACT

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a unique furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation. Here, we show that O-glycosylation near the furin cleavage site is mediated by specific members of the GALNT enzyme family and is dependent on the novel proline at position 681 (P681). We further demonstrate that O-glycosylation of S decreases furin cleavage. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the potential role of P681 mutations in the recently identified, highly transmissible B.1.1.7 variant.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL